
BrainBay - Developer Manual page 1 / 35

BrainBay - Developer Manual
Version 1.8, 2011-07-29

Author: Christoph Veigl, webpage: http://brainbay.lo-res.at

Contents:

1. Introduction.. 2
2. System Requirements and Programming Environment .. 2
3. Libraries and Compilation Options ... 3
4. BrainBay Development .. 7
5. Adding a new Element - an Example ... 20
6. File Formats and Transmission Protocols ... 28
7. Credits and Links ... 30
8. Disclaimer - Nonliability .. 31
9. GNU GENERAL PUBLIC LICENSE ... 32

BrainBay - Developer Manual page 2 / 35

1. Introduction

This Manual provides information about the development environment and the
internal structures of the BrainBay application. It is intended to support software
developers in understanding and extending BrainBay. After a brief description of
programming principles and important classes and functions, an example for
adding a new processing element is given. As an appendix, the transmission
protocols of Open-EEG firmware and the EDF- data format are shown.

2. System Requirements and Programming Environment

2.1 Hardware

The application was developed on a laptop computer running Windows-7. It is
confirmed that compilation and execution also works on older Windows variants
like Window 98, Windows 2000 and XP, and that Wine can be used to run
BrainBay on Linux-based systems as on Macs with OS-X. Hardware platforms
from Pentium II onwards with about 256 MB Ram should be fine to run Brain-
Bay.

2.2 Development Tools

The source code is written in C++, using the Win32 API for system calls and
graphical user interface. BrainBay is a plain Win32 - Application, it does not
need the MFC-framework. Microsoft Visual Studio 2010 was used as develop-
ment environment. With this IDE, the user-dialogs can be drawn and compila-
tion and debugging are quite comfortable. The free express version of the IDE
can be used for building the application from sources (GUI design is not sup-
ported by the express version).

BrainBay - Developer Manual page 3 / 35

The project-file brainbay.sln is located in the source directory and can be read
by Visual Studio. It contains information about the relevant source-files (.cpp),
header-files (.h) and resource-components like dialogs and menus (.rc-file).

When a freeware development environment is desired, the Minimalis GNU for
Windows (MinGW) -framework can be used (see http://www.mingw.org).
MinGW is a collection of freely available and freely distributable Windows spe-
cific header files and import libraries combined with GNU toolsets that allow one
to produce native Windows programs that do not rely on any 3rd-party C
runtime DLLs.

3. Libraries and Compilation Options

3.1 Static Libraries for linking the executabe file:

As BrainBay is a growing project which includes functions of other OpenSource
developments, there are a number of libraries that have to be included for a
successful linking process. In VisualStudio, use the Project -> Settings -> Linker
dialog to view and modify these static libraries:

3.1.1 Standard libraries provided by the Visual Studio IDE

Following libraries provide functions for message handling, communication and
user interfacing in a standard Win32 - application:

kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib
shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib comctl32.lib

additional standard libraries needed for multimedia and OpenGl -support:

 winmm.lib, vfw.lib, opengl32.lib glu32.lib glaux.lib

BrainBay - Developer Manual page 4 / 35

3.1.2 Non-standard Open-Source third-party libraries:

The non standard libraries provide additional function like low-level multimedia
support, mathematical calculations or image processing. The .lib - files have to
be copied into the /lib directory of the programming environment, e.g. 'visu-
al_studio/vc98/lib' :

SDL.lib, SDL_net.lib, SDL_sound.lib, modplug.lib :
 Simple Direct Media Layer (http:// www.libsdl.org)

fidlib.lib : Jim Peter's Filter Library (http://uazu.net/fidlib)

matheval.lib : Gnu math-evaluator library

 http://www.gnu.org/software/libmatheval/manual/libmatheval.html

cv.lib cvcam.lib cxcore.lib, highgui: Intel's Open Computer Vision Library OpenCV

 http://www.intel.com/research/mrl/research/opencv

skinstyle.lib : SkinStyle- Win32 Skinning Library by John Roark

 http://www.codeproject.com/dialog/skinstyle.asp

Compiling/Linking-information for VC++, Win32-Debug:

The Projects uses the following additional libraries:
 fidlib.lib : Jim Peter's filter library
 opengl32.lib, glu32.lib : openGL
 SDL.lib SDL_net.lib SDL_sound.lib : Simple Direct Media Layer
 matheval.lib modplug.lib vfw32.lib
 cv.lib cvcam.lib cxcore.lib highgui.lib libeng.lib libmx.lib: Open Computer Vision Library
 skinstyle.lib : skinnned dialog interface

Preprocessor Options:
 WIN32,_DEBUG,_WINDOWS,_MBCS

Project Options:
 /nologo /MLd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D
"_MBCS" /Fo"Debug/" /Fd"Debug/" /FD /GZ /c

all Library Modules:
 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib
 ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib comctl32.lib winmm.lib
 opengl32.lib glu32.lib SDL.lib SDL_net.lib fidlib.lib matheval.lib SDL_sound.lib mod
 plug.lib vfw32.lib glaux.lib cv.lib cvcam.lib cxcore.lib highgui.lib skinstyle.lib

3.1.3 Non-standard commercial third party libraries

These libraries are not needed for compiling/linking brainbay in standard config-
uration. They provide access to the matlab engine which is used by the matlab-
element to transfer data to and from matlab:

libeng.lib libmx.lib : Matlab engine (http://www.mathworks.com)

BrainBay - Developer Manual page 5 / 35

These libraries are part of the matlab distribution and can be copied from there
to the /lib directory of the programming IDE, if the matlab-element will is used by
defining the MATLAB_RELEASE constant in ob_matlab.h.

3.1.4 Summary

Here is a summary of all needed static libraries:

kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib
ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib comctl32.lib winmm.lib
opengl32.lib glu32.lib SDL.lib SDL_net.lib fidlib.lib matheval.lib SDL_sound.lib mod-
plug.lib vfw32.lib glaux.lib cv.lib cvcam.lib cxcore.lib highgui.lib skinstyle.lib

3.2 Dynamic Link Libraries (DLLs)

The Dlls reside in the same directory as the executable file. They are loaded at
runtime and have to match the calls declared in the static libraries / function pro-
totypes. BrainBay needs the following .DLLs:

SDL.dll, SDL_net.dll, SDL_sound.dll: for the Simple Direct Media Layer
cv097.dll, cvcam097.dll, cxcore097.dll, highgui097.dll: for OpenCV
matheval.dll : for the GNU math-evalvaluator

3.3 Compiler & Linker Options for Visual Studio

Preprocessor Options:

 WIN32,_DEBUG,_WINDOWS,_MBCS

Project Options:

/nologo /MLd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS"
/D "_MBCS" /Fo"Debug/" /Fd"Debug/" /FD /GZ /c

Link Options:

 /nologo /subsystem:windows /incremental:yes /pdb:"Debug/brainbay.pdb"
 /debug /machine:I386 /out:"Debug/brainbay.exe" /pdbtype:sept

3.4 Compiliation & Linking -Information for MinGW:

Compiling/Linking-information for MinGW: (contributed by Jeremy Wilkerson)

MinGW has all the needed libraries. It links with the native Windows libraries.
Here are the steps to build the application:

 -use the make to compile and link just the main source files
 -use the make-all.bat file to compile and link everthing, including matheval library

the resource file can be compiled seperately using windres -i brainBay.rc -o brain-
BayRes.o

BrainBay - Developer Manual page 6 / 35

Following compile switches are used: g++ -c -DWIN32 -D_DEBUG -D_WINDOWS -
D_MBCS -DMINGW *.cpp

the -DMINGW define tells the preprocessor to bypass the skinstyle library for the
skinned dialog interface because this is only supported by the MSVC++ compiler by
now. If mingw\bin is on your path, use the command 'make depends', then 'make'.
The 'make depends' generates a file that tells make which header files each cpp file
depends on, and it doesn't need to be executed again unless that information changes.

BrainBay - Developer Manual page 7 / 35

4. BrainBay Development

4.1 Basic Principles of Windows Programming

BrainBay is an event-driven Win32-Application. User interaction is provided by
dialog windows, the processing of user interaction resides in the corresponding
window handlers. The coordination of events like keyboard- and mouse inputs in
a Windows-environment is done by processing messages. A message consists
of the message identifier (16 - bit integer) and two message parameters
(wParam, lParam, both 32-bit integers). If an event occurs, such as the user typ-
ing on the keyboard, moving the mouse, clicking a button, then messages are
sent by the system to the windows affected. The message-loop holds pending
messages that have to be processed. Beside initalisation tasks, the main-
function of the application processes the message loop, by querying the mes-
sage queue and calling the translate() and displatch() functions:

 MSG msg;
 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

Messaging in a Windows Application:

Processing Messages in a simple Window-Handler:

LRESULT CALLBACK WndProc(
 HWND hWnd, // the handle to the Window
 UINT message, // the message identifier
 WPARAM wParam, // first 32 bit parameter
 LPARAM lParam) // second 32 bit paramte
{
 int wmId, wmEvent;

BrainBay - Developer Manual page 8 / 35

 switch (message)
 {
 case WM_COMMAND:
 wmId = LOWORD(wParam);
 switch (wmId)
 {
 case IDM_ABOUT:
 DialogBox(hInst, (LPCTSTR)IDD_ABOUTBOX,
 hWnd, (DLGPROC)About);
 break;

 case IDM_EXIT:
 DestroyWindow(hWnd);
 break;

 default: return DefWindowProc(hWnd, message,wParam, lParam);
 }
 break;
 default: return DefWindowProc(hWnd, message, wParam, lParam);
 }
 return 0;
}

In this example, only the WM_COMMAND message is processed: a dialog box
is displayed when a button referenced by the constant IDM_ABOUT is pressed.
This constant is passed to the handler in the lower 16-bit of the wParam - Pa-
rameter. When IDM_EXIT is received, the window will be closed.

When a window or dialog has more controls, processes mouse functions or
needs painting routines, a variety af messages are sent to the window handler
function. Some examples:

WM_INITDIALOG: when a dialog is created
WM_CLOSE: when a dialog or window is closed
WM_HSCROLL, WM_VSCROLL: when a scrollbar is changed
WM_MOUSEMOVE: when the mouse moves over the window
WM_LBUTTONDOWN, WM_LBUTTONUP: left mouse button pressed or released
WM_RBUTTONDOWN, WM_LBUTTONDOWN: right mouse button pressed or released
WM_DBLCLICK: left double click into the window or control
WM_PAINT: when the window is to be painted
WM_ACTIVATE: when the window is activated

A thread that contains a message loop is also known as a user-interface thread.
A user-interface thread is associated with one or more windows which are cre-
ated in that thread. The thread is often said to own these windows. The window
procedure for a window is called only by the thread that owns the window. This
happens when DispatchMessage() is called inside the thread. Any thread may
send or post a message to any window but the window procedure of the target
window will only be executed by the owning thread. The end result is that all
messages to a target window are synchronized. That is, the window is guaran-
teed to receive and process messages in the order in which the messages are
sent/posted.

For creating new windows, the window class has to be registered using the
WNDCLASSEX - structure and the RegisterClassEx(..) function. The structure

BrainBay - Developer Manual page 9 / 35

holds a pointer to the window-handler function, a handle to the instance (the ex-
ecutable file), resource-identifiers for icons, cursor type and background color
and the class name.

The CreateWindow(..) - function builds a new window, referring to a given win-
dow-class, various window styles, a window title and position.
For an explaination of parameters and details of Windows programming, please
refer to http://www.winprog.org or http://msdn.microsoft.com.

4.2 BrainBay - element base class

The main functional parts of BrainBay are the design elements. Each element
type has it's own class that is derived from the BASE_CL - class. The BASE_CL
- class provides the basic structure for elements:

 - input- and output - ports
 - methods for starting and stopping the session
 - positioning in archives, getting archive length
 - loading and saving properties
 - receiving values and processing data.

The BASE_CL - class, defined in base.h :

class BASE_CL
{

 public:
 int type; // object type
 int inports, outports; // number of in- and outports
 int xPos, yPos; // position of element in design window
 int width, height; // with and height of element in design window
 char tag[30]; // element tag
 HWND displayWnd; // output window (if any)

 OUTPORTStruct out_ports[MAX_PORTS];
 // name, description, range, dimension and value of an input-connection

 INPORTStruct in_ports[MAX_PORTS];
 // name, description, range and dimension of an output-connection

 LINKStruct out[MAX_CONNECTS];
 // source (objectnumber, portnumber) and destination of connection,
 // range, dimension and description
 HWND hDlg; // user dialog window

 BASE_CL (void) {}; // sets all ports and connection to default values
 virtual ~BASE_CL (void) {} // deconstruction
 virtual void work (void) {} // called when a new sample arrives
 virtual void update_inports (void) {} // when inports are connected or removed
 virtual void session_start (void) {} // called when session is started
 virtual void session_stop (void) {} // - " - stopped
 virtual void session_reset (void) {} // - " - reset
 virtual void session_pos (long pos) {} // new session position
 virtual long session_length (void) { } // ask for archive length

BrainBay - Developer Manual page 10 / 35

 virtual void make_dialog (void) {} // display the user dialog
 virtual void load (HANDLE hFile) {} // load from configuration file
 virtual void save (HANDLE hFile) {} // save to configuration file
 virtual void incoming_data(int port, float value) {} // reveice input on port

 void pass_values (int port, float value) // pass ouput to connected elements
};

As methods are declared as 'virtual' - functions, an element will implement only
the methods that it needs. For example, if an element only does calculations of
a value, it will not implement the method for archive-positioning etc.

4.3 Modules with common Functions and Global Variables

The following source- and header files provide globally accessible functions and
structures for data processing, file operations, com-port control and dialog oper-
ations. This framework could also be used by new elements.

4.3.1 Base.h:

Definitions of the BASE_CL class (see above) and the maximum array sizes (elements, in-
put- and output ports).

4.3.2 Brainbay.h

Definitions of global constans like element-numbers, element-names, file-types, default
com-settings, file-modes, protocol-types. Declarations of global varibles and global struc-
tures: GlobalStruct, PacketStruct, CaptfileStruct, TTYStruct, TimingStruct, FliterStruct,
EDFheaderStruct, EDFChannelStruct. For more information on the structure members see
the header-file brainbay.h

4.3.3 Brainbay.cpp:
This modules holds the main function WinMain(...). It registers the window-classes, creates
the main- and design-window, initialises the application and loads the initial design if option
GLOBAL.startup is TRUE. The message queue is queried and dispatched in the message
loop, where also the HotKeys are checked. The MainWndHandler(...) processes menu se-
lections as insertion of new elements or loading design configurations.

4.3.4 Globals.cpp:

This Module stores global variables and functions for initialisation, de-initialisation and ele-
ment-handling:

// arrays and variables for element handling:
BASE_CL * objects[MAX_OBJECTS]; // array of elements in the design
BASE_CL * actobject; // active element
struct LINKStruct * actconnect; // active connection
int PACKETSPERSECOND=DEF_PACKETSPERSECOND; // sampling rate

// Window and dialog handles
HINSTANCE hInst; // instance of main class
HACCEL ghAccel; // keyboard accelerator
HWND ghWndMain; // handle of main window
HWND ghWndToolbox; // handle of toolbox window (element user dialogs)
HWND ghWndStatusbox; // handle of Status Window
HWND ghWndSettings; // handle of Settings Window
HWND ghWndDesign; // handle of Design Window
HWND ghWndAnimation; // handle of Animation Window
HGLRC GLRC_Animation; // handle to OpenGL-context of Animation Window

// global data, com-settings, timing
struct GLOBALStruct GLOBAL; // global accessible parameters

BrainBay - Developer Manual page 11 / 35

struct TTYStruct TTY; // Com Port settings
struct PACKETStruct PACKET; // current biosignal packet
struct MIDIPORTStruct MIDIPORTS[MAX_MIDIPORTS]; // accessible midi output devices
struct TIMINGStruct TIMING;

// captions
char objnames[50][20] = { OBJNAMES }; // names of all elements
char dimensions[10][10] = {"uV","mV","Hz","%" }; // dimensions for connections

Functions defined in Globals.cpp:

void register_classes(hinstance)
registers all window classes

void GlobalInitialize(void)
sets up the SDL-framework, sets global variables and structures (path to the application,
Com-port settings, window positions, status variables; Loads default settings, initializes tim-
ing, opens midi ports, creates drawing structures

void GlobalCleanup(void)
deconstructs all elements, quits SDL, closes midi ports, deletes drawing structures.

void create_object (int type)
creates a new element of given type. A pointer to the element is stored in the global ac-
tobject variable. The type is defined in brainbay.h as constant OB_<element_name>.

void free_object(int actobj)
deletes the element with index actobj from the design

void swap_objects(int a, int b)
exchanges the elements indices a and b for sorting purposes

int sort_objects(void)
sorts all elements in the design according to their connections (signal sources before signal
targets)

void set_dimensions(struct LINKStruct * act,float max, min, char * dim, * desc)
sets new range, dimension and description for the given connection

void update_dimensions(void)
propagates the ranges and dimensions through all elements

void update_samplingrate(int newrate)
selects a new samplingrate for signal processing and re-initialises the concerned filter and
magnitude elements

void get_session_length()
calculates duration of longest archive file in the current configuration and stores the value in
GLOBAL.session_end;

void set_session_pos(long pos)
sets the current position of playback to sample number pos, calls the session_pos() method
of all elements

float size_value (float min,max,x,to_min,to_max, int clip)
resizes value x from ranges (min, max) to ranges (to_min, to_max)

void reduce_filepath (char* to, char * from)
copies the filename without leading path-information to a new string

int count_inports(BASE_CL * obj)

BrainBay - Developer Manual page 12 / 35

returns the number of the greatest connected input port of the given object

reset_oscilloscopes()
clears all oscilloscope windows

4.3.5 Files.cpp:

This module holds file operation functions like archive file creation or reading, loading and
saving configuration files, parsing EDF files etc.:

HANDLE create_captfile(LPCTSTR lpFName)
creates an archive-file for capturing live data from a biosignal amplifier in P2 or P3 protocol.
Set the action in the CAPTFILE-structuce to 'writing' and returns a handle if successful or
otherwise returns INVALID_HANLDE_VALUE.

void open_captfile(LPCTSTR lpFName)
opens an archive file for reading. If successful, the CAPTFILE-structure is filled with header
data and filehandle, action is set to 'reading'. Displays an error message if the file cannot be
opened.

void close_captfile(void)
closes an opened archive file, clears the CAPTFILE structure and updates the total session
length.

void update_devicetype(void)
sets archive file reading and writing options according to the type of amplifier protocol (P2,
P3) or archive format (P2, P3 or RAW).

void read_captfile(int amount)
reads amount bytes from an opened archive of given type file and transfers the bytes to the
input buffer TTY.readBuf.

void read_captfile(int amount)
writes one byte to an openen archive file

int open_file_dlg(HWND hDlg, char * szFileName, int type, int flag_save)
displays a dialog for choosing a path and filename. hDlg is a handle to the calling window,
szFilename gives the initial path and will store the new path, type selects the wildcards for
displaying files and flag_save selects a 'open-' or 'create' - type of dialog.

BOOL load_from_file(LPCTSTR pszFileName, void * buffer, int size)
loads a buffer of given size from a file called pszFileName.

BOOL save_to_file(LPCTSTR pszFileName, void * buffer, int size)
saves a buffer of given size to a file called pszFileName.

BOOL load_configfile(LPCTSTR pszFileName)
loads a configuration file with the given name. If the file exists, a eventually runnig session
is stopped and the current design is closed, deleting all elements. The settings for the new
desing and all elements are imported from the configuration file. The design will be started
when the GLOBAL.autorun option is TRUE.

BOOL save_configfile(LPCTSTR pszFileName)
creates a configuration file of given name and stores all global and elemtn data into this file.
Returns TRUE is successful and FALSE otherwise.

BOOL save_settings(void)
saves applicatiion settings to the file brainbay.cfg. The settings include samplingrate, com-
port, baudrate, devicetype, refresh-intervals for dialogs and draw-windows, autorun and au-
to-load options, midi-ports and the current config-file.

BrainBay - Developer Manual page 13 / 35

BOOL load_settings(void)
loads the application setting from the file brainbay.cfg.

int load_next_config_buffer(HANDLE hFile)
reads strings from file hFile and sores them into GLOBAL.configbuffer until the line 'end ob-
ject' is read. Using this function, a block of parameters can be read from a configuration or
settings file.

void load_property(char * desc,int type, void * ad)
loads a variable value from the string buffer GLOBAL.configbuffer. This buffer is read from a
configuration file when it is loaded. Desc is a string identifier for the variable, type selects in-
teger (P_INT), float (P_FLOAT) or string (P_STRING) - data, ad is a pointer to the variable
that will be filled when description/value is found in the string buffer.

void save_property(HANDLE hFile, char * desc,int type, void * ad)
stores a variable value in readable form to a file. Desc is a string identifier for the variable
that will be written before the value, type selects integer (P_INT), float (P_FLOAT) or string
(P_STRING) - data, ad is a pointer to the variable that will be written to the file.

void save_object_basics(HANDLE hFile, BASE_CL * actobj)
stores element position, number of input and output port, element tag and all element con-
nections in readable form to the file hFile.
void load_object_basics(BASE_CL * actobj)
loads element position, number of input and output port, element tag and all element con-
nections from the string buffer GLOBAL.configbuffer.

void parse_edf_header(EDFHEADERStruct * to, CHANNELStruct * tochn, char * from)
extracts EDF- header and channel information out of the string *from

void generate_edf_header(char * to, EDFHEADERStruct * header, CHANNELStruct *
channels)
parses EDF - header and channel information into string *to

HANDLE open_edf_file(EDFHEADERStruct * to, CHANNELStruct * tochn, char * file-
name)
displays a file-open dialog and extracts EDF-header and channel information from the file, if
valid. (returns: file handle if valid EDF-File, INVALID_HANDLE_VALUE if no valid file)

HANDLE create_edf_file(EDFHEADERStruct * from, CHANNELStruct * fromchn, char *
filename)
displays a file-save dialog and puts header- and channels information into the chosen file
(returns: file handle if valid EDF file, INVALID_HANDLE_VALUE if no valid file)

4.3.6 TTY.cpp

This module provides functions for COM-port handling and reader- and writer-threads for
communication.

BOOL SetupCommPort(int port)
initialises and opens the COM - Port port (for example COM3 or COM7). 8 data bits, no
parity and one stop bit is used, the baudrate is given by TTY.BAUDRATE. If the COM-Port
can be sucessfully opened, the handle to the device will be stored in TTY.COMDEV and a
reader thread will be created that processes the incoming data (ReaderProc). If an error oc-
curs, a message will be display and the function returns FALSE.

BOOL BreakDownCommPort()
if a Com-Port is openend, the reader thread will be shut down and the COM-Port will be
closed.

BrainBay - Developer Manual page 14 / 35

4.3.7 Timer.cpp

This module provides initialisation and de-initialisation of the timer-interrupt routine and tim-
ing-specific structures. If no COM-port reader thread is active, the timer interrupt controls
the processing of packets through the elements.

void init_system_time(void)
queries the perfomance-counter (system counter) and selects TTY.packettime according to
the current sampling rate (PACKETSPERSECOND). Resets packet counter and session
time to zero.

void process_packets(void)
processes one packet through the elements: calls the woker methods of all elements, up-
dates packet counter and the status bar.

void CALLBACK TimerProc(UINT uID,UINT uMsg,DWORD dwUser,DWORD
dw1,DWORD dw2)
the timer interrupt function, it is called as often as possible (1 ms period). If the packet-time
(1/PACKETSPERSECOND) has passed, process_packets () will be called to do the signal
processing in the elements. If an archive file is opened, one packet will be read from there.

void start_timer(void)
enabled the timer interrupt routine

void stop_timer(void)
disables the timer interrupt routine

4.3.8 Dialogs.cpp

This module holds some dialog specific functions and dialog handlers for the design-
window, the status bar, the options window and the color- and tonescale editors.

COLORREF select_color(HWND hwnd)
displays a color selection dialog provided by the system. The chosen color is returned.

void update_toolbox_position(HWND hDlg)
stores the current position of the toolbox window is into the GLOBAL structure

void display_toolbox(HWND hDlg)
the dialog hDlg is moved to the stored postion for the toolbox-window and shown as top
layer window, the focus is given to the dialog.

void close_toolbox(void)
an eventually opened toolbox window is closed

int get_scrollpos(WPARAM wParam, LPARAM lParam)
can be used to update the position of horizontal or vertical silder bars that receive a mes-
sage in their dialog window. The updated position will be returned.

void color_button(HWND hWnd, COLORREF newcolor)
sets the color of a window-element (like a button) to newcolor

LRESULT CALLBACK COLORDlgHandler(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam): dialog handler and functions for the color editor

BrainBay - Developer Manual page 15 / 35

LRESULT CALLBACK SCALEDlgHandler(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam): dialog handler and functions for the tonescale editor

LRESULT CALLBACK SETTINGSDlgHandler(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam): handler for the settings (options) - dialog

LRESULT CALLBACK CONNECTDlgHandler(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam): dialog handler for the connection - info

LRESULT CALLBACK OUTPORTDlgHandler(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam): dialog handler for the output - port settings

LRESULT CALLBACK INPORTDlgHandler(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam): dialog handler for the input - port settings

LRESULT CALLBACK TAGDlgHandler(HWND hDlg, UINT message, WPARAM wParam,
LPARAM lParam): dialog handler for the element - tagging

LRESULT CALLBACK StatusDlgHandler(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam): dialog handler and functions for the status bar

LRESULT CALLBACK DesignWndHandler(HWND hWnd, UINT message, WPARAM
wParam, LPARAM lParam): dialog handler for the design window
The Design Window Handler processes all mouse events that are necessary to arrange the
elements in the design window, connect and delete links between elements, display user
dialogs for the elements and scroll the design window. When new connections are estab-
lished, the sort_objects() - function is called to ensure a valid sequence of the elements for
processing.

void report(char * Message)
reports a message in a dialog box

void report_error(char * Message)
reports an error message in a dialog box

void critical_error(char * Message)
reports an error message in a dialog box and exits application

void add_to_listbox(HWND hDlg, int idc, char * str)
adds string str to a listbox that is identified by resource-number idc and dialog handle hDlg

4.3.9 Draw.cpp

This module holds function for creating global drawing objects like brushes, pens or fonts,
and functions to draw the display window with elements and connections.

void init_draw(void)
creates some brushes, pens and fonts in the DRAW- structure

void draw_object(HDC hdc, WORD t)
draws element number t into the hdc device context. If this element is the active element, it
will be drawn with an orange border.

void draw_connections(HDC hdc, WORD t)
draws the outging connectiong from element t into the device context hdc

void draw_captions(HDC hdc, WORD t)
draws the captions for element t into device context hdc

void draw_objects(HWND hWnd)
draws all elements, including connections and captions. hWnd is the hande to the design
window

BrainBay - Developer Manual page 16 / 35

SDL_Surface *LoadBMP(char *filename)
Loads a bitmap file (.BMP) and rearranges the bytes for a SDL_surface

4.3.10 Midi.cpp

This module provides vaiables and functions for configuring the Midi-Out Device and gen-
erating midi-notes.

* char midi_instnames[256]
Ths array holds names for the 127 standard Midi-Instruments and 127 Midi-Controllers.

void init_midi (void)
copies the names of available midi-ouput devices on the system into the
MIDIPORTS[..].portname structure and returns a counter of available ports in
GLOBAL.midiports

void midi_Instrument(HMIDIOUT * midiout, int chn, int inst)
sets the current instrument for midi-device midiout and channel chn to inst

void midi_ControlChange(HMIDIOUT * midiout, int chn, int cont, int val)
outputs the control-change message val to controller cont and channel chn of midi-device
midiout

void midi_NoteOn(HMIDIOUT * midiout, int chn, int note, int vol)
plays midi - tone note with volume vol on channe chn of midi-device midiout

void midi_NoteOff(HMIDIOUT * midiout, int chn, int note)
mutes the midi-tone note on channel chn of midi-device midiout

int midi_open_port(HMIDIOUT * midiout, int portnum)
opens the midi - output device number portnum and stores the hande in HMIDIOUT.
Returns TRUE if successful, FALSE otherwise.

void mute_all_midi(void)
mutes all playing notes of all elements in the current design

BrainBay - Developer Manual page 17 / 35

4.4 Element Modules

The following table gives a summary of the modules containing signal pro-
cessing elements. The row 'specific features' reports special funcionalities or li-
brary calls of the element, that could be useful for new element developments.

ELEMENT/MODULE

PURPOSE

SPECIFIC FEATURES

ob_and.cpp outputs logical AND of two inputs

ob_average.cpp

outputs averages ofprevious n
samples

ob_avi.cpp

extracts and displays a frame of
an .AVI file, selected by the input
value

OpenGl window

ob_ballgame.cpp

provides a 'catch-the-ball' - game,
controlled by the input value

GDI drawing window

ob_cam.cpp

display and record live camera,
perform face detection

livecam window,
calls to OpenCV-library
runs in own thread

ob_compare.cpp

compares two inputs, outputs re-
sult

ob_com_writer.cpp

writes command sequence to
COM-Port

writes to the COM-port of
currently connected amplifi-
er hardware

ob_constant.cpp

outputs constant value

ob_correlation.cpp

outputs cross correlation of two
inputs

ob_counter.cpp

counts TRUE/FALSE transitions
and / or displays value

GDI drawing window

ob_debounce.cpp

removes TRUE/FALSE transitions
from input signal

ob_deviation.cpp

calculates standard deviation

ob_doku.cpp

provides textbox for documenta-
tion

ob_edf_reader.cpp

reads edf file and provides signals
at ouptu ports

dynamic number of output
ports

ob_edf_writer.cpp

writes input values to edf file dynamic number of input
ports

ob_eeg.cpp

connects to eeg-amplifier, pro-
vides live data or archive data at
ouputs ports

creates a reader thread for
receiving data from the am-
plifier, paces signal pro-
cesing if connected

ob_erpdetect.cpp

records and averages input signal,
ouputs difference of pattern and
last n samples

displays recorded pattern in
user dialog

ob_evaluator.cpp

evaluates mathematical expres-
sion containing input values

calls matheval-library

ob_fft.cpp

performs fourier transformation,
display bar-graph, spectrogram or
3d-display

OpenGL display window

ob_file_writer.cpp

writes input values to text file dynamic number of input
ports

ob_filter.cpp

filters inputs signal with selectable
filter type

display filter response in
user dialog

ob_integrate.cpp sums input signal

BrainBay - Developer Manual page 18 / 35

ob_magnitude.cpp

outputs magnitude in selectabel
passband

ob_matlab.cpp

calls matlab engine with an array
of n samples, provides ANS vari-
bale

calls the matlab-engine li-
braries

ob_mci.cpp

interface to multimedia player,
provides triggered playing, vol-
ume, speed and step - control

calls the vfw - API, displays
own window for movies

ob_midi.cpp

generated midi-tones with se-
lectable tonescale

calls the mmsystem midi
API

ob_mixer4.cpp

mixes up to 4 signals to one out-
put signal

ob_mouse.cpp

provides mouse-cursor and click-
ing control

sets the mouse cursor and
clicking events using
mouseevent()

ob_not.cpp

outputs logical NOT of input value

ob_or.cpp

outputs logical OR of two input
values

ob_osci.cpp

displays connected signals in os-
cilloscope view

GDI drawing window

ob_particle.cpp

displays particle system animation
with selectable parameters

OpenGL drawing window

ob_sample_hold.cpp

stores an input value and outputs
it continuously

ob_signal.cpp

singnal generator with selectable
type, center, amplitude, frequency

selectable input ports

ob_skindialog.cpp

skinned user dialog with buttons
and scrollbar

creates skinned dialog win-
dow from external .ini - file

ob_tcp_receive.cpp

receives EDF-data from tcp-
connection

connects to neuroserver
network service, dynamic
number of output ports

ob_tcp_sender.cpp

sends EDF-data to tcp-connection connects to neuroserver
network service, dynamic
number of input ports

ob_threshold.cpp

performs static or dynamic
thresholding on the input value

GDI drawing window

ob_translate.cpp

translate and/or gain input signal

ob_wav.cpp play a sound file with selectable
speed

uses SDL_SOUND and
modplug.dll to provide audio
output

 Note: the above table is not up-to-date, some of the newer elements are missing.

BrainBay - Developer Manual page 19 / 35

4.5 Signal Processing

The internal processing of the signals in BrainBay is quite simple:
Each output port of an element can be connected to one or more input ports of
other elements. Every input port can handle one connection. Floating point -
values are passed from output to input ports at sampling frequency (for example
256 Hz), the work()-methods of all existing elements are called with that fre-
quency. The calling-order is given by the element's connections: elements that
generate data are called first, elements that receive data are called last.

The sorting is done when a new
element is inserted into a design
(see implementation in the
DesignWndHandler, dialogs.cpp)

In the left figure, the EEG element
will be processed first, the filter will
be second and the oscilloscope
will be last.

Processing values through the elements is accomplished by calling the ele-
ments' work() - methods. This task is initiated from either the timer interrupt (see
implementation in timer.cpp) or from the reader-thread of the EEG-element that
processes inputs from the COM-port. In the design shown in the above figure,
the EEG-element will pace the signal processing. When a packet from the EEG-
hardware has arrived, the current channel values are copied from the structure
PACKET.buffer[] to the output ports of the EEG-element. Thus, all elements are
provided with 'fresh' samples as soon as they arrive. (see implementation in
ob_eeg.cpp and tty.cpp). The method pass_values (int port, float value) trans-
fers ouput values to connected elements. pass_values will call the method in-
coming_data (port, value) of all connected elements.

This figure shows the element or-
der of another design, where no
EEG-element is present. The sig-
nal processing of this design will
be paced by the timer interrupt.

BrainBay - Developer Manual page 20 / 35

5. Adding a new Element - an Example

If you want to build a new element, you will need the following:

• the element name and -number defined in brainbay.h

• a dialog containing the GUI for the element-properties

• a class derived from BASE_CL, with variables for the element-

 properties and implementations of the needed methods
 Any useful element will at least need the constructor and the load()- and
 save() mehtods to store element-specific data. Elements that process
 data will also need incoming_data() and work().

• a dialog handler to control the GUI behaviour

• a menu entry and the call to create_object() in brainbay.cpp when the

 menu-point was selected (view the MainWndHandler in brainbay.cpp)

In the following, these steps will be shown for a new element called 'demo'.
To access the files, open the project file brainbay.dsw with MS-VisualStudio.
For this demonstration, VisualStudio C++ V6.0 was used.

5.1 Entries in brainbay.h

At the beginning of the file brainbay.h, you find the definitions of a unique con-
stant per element. Add a line for the new object, OB_DEMO:

(....)
#define OB_FILE_WRITER 37
#define OB_DEVIATION 38
#define OB_MCIPLAYER 39
#define OB_DEMO 40
(...)

Beneath the constants, the default-tags for the elements in the design window
are given in an array, add the name for the new element:

#define OBJNAMES "EEG","MIDI", (...),
 "FILEWRITE", "DEVIATION", "MEDIAPLAYER" , "DEMO"

BrainBay - Developer Manual page 21 / 35

5.2 Building a new dialog

Use the Resource Editor to add a new user dialog to
the list of existing dialogs. This can be done by right-
clicking the dialog-entry in the list of resources. When
the new dialog was created, a new entry will emerge on
the list, showing the default identifier for the dialog
(IDD_DIALOG1). Rename the dialog identifier by dou-
ble clicking the dialog window. This Dialog will be called
IDD_DEMOBOX. This identifier will be needed later
when the dialog window will be created.
Adjust the dialog settings according to the other ele-
ments (thin frame, absolute position, modal window,
static border, stay in front). Delete the default 'OK' and
'Cancel' Buttons, name the dialog and add your inter-
face itmes. For this example, a Text-Edit field, a Scroll-
bar, a Combobox a Button and some Static-text were
inserted. All items have an identifier (IDC_<idname>).
For simplicity, the identifiers were renamed to
IDC_EDIT, IDC_SCROLLBAR, IDC_COMBO and
IDC_BUTTON by double clicking the items.

5.3 Setting up a new class for the element

Create a new header (.h) and a new source (.cpp) - file to contain the element
class and the dialog handler for the user dialog. The class is inherited from
BASE_CL. The easiest way to generate source and header files is to copy an
existing BrainBay element that has similar functionalities as the new element.

For this example, the files will be called ob_demo.h and ob_demo.c and the el-
ement will be called DEMOOBJ. Add the files to the VC++ - project by using the
menu Project-> Add to Project -> Files

BrainBay - Developer Manual page 22 / 35

5.3.1 Header file for the new element

ob_demo.h contains the declaration of the new class:

class DEMOOBJ : public BASE_CL
{
 protected: // declare protected variables here

 public: // public variables that can be accessed from Dialog Handler
 int selection; // selection from our combo-box
 char string[50]; // text input into the text filed
 int pos; // position of the scrollbar
 float in1,in2; // buffer for input values of port 1 and 2

// STANDARD METHODS (nearly every element has these) :

 DEMOOBJ(int num); // construction method
 void make_dialog(void); // to display the user dialog
 void load(HANDLE hFile); // to load element's properties
 void incoming_data(int port, float value); // to process incoming data
 void save(HANDLE hFile); // to save elements properties
 void work(void); // for calculations and passing output values
 ~DEMOOBJ(); // destruction of the element

// NON_STANDARD METHODS (some elements need these) :

 void update_inports (void); // when inports are connected or removed
 void session_start (void); // called when session is started by user
 void session_stop (void); // called when session is stopped by user
 void session_reset (void); // called when session is reset by user
 void session_pos (long pos); // called when session pos was changes by user

 // Dialog handler to process user interaction with IDD_DEMOBOX :

 friend LRESULT CALLBACK DemoDlgHandler(HWND hDlg, UINT message, WPARAM
 wParam, LPARAM lParam);
 private: // declare private variables here
};

5.3.2 Source file for the new element

ob_demo.cpp contains the implementations of class and dialog handler. The
function of the demo element will be to receive two inputs and compute one
output in a way selectable by the combo box. The scrollbar-value will be used to
scale the output from 0 - 100%. The Button will display a message on screen,
containing the value of the text box. All standards methods will be implemented,
and using the non-standard methods will be shown with dummy-actions.

We'll start with including the header files :

#include "brainBay.h" // include the global definitions and structures
#include "ob_demo.h" // include the element-specific declarations

BrainBay - Developer Manual page 23 / 35

Next comes the constructor for the object, which will be called from the main-
menu (insert element) or when a design configuration is loaded :

DEMOOBJ::DEMOOBJ(int num) : BASE_CL() // element constructor
{
 outports = 1; // the element will have one output port
 inports = 2; // the element will have two input ports
 strcpy(in_ports[0].in_name,"val1"); // input port1 will be call 'val1'
 strcpy(in_ports[1].in_name,"val2"); // input port2 will be call 'val2'
 strcpy(out_ports[0].out_name,"out"); // output port will be call 'out'

 strcpy (string, "hello world"); // do additional initialisations here
}

If the element has features like an own drawing window or buffers to allocate,
these initialisations should also take place in the constructor.

Next, we implement the make_dialog() method to display the user dialog :

void DEMOOBJ::make_dialog(void) // will be called when element is right-clicked,
{
 display_toolbox(hDlg=CreateDialog(hInst, (LPCTSTR)IDD_DEMOBOX, NULL,
 (DLGPROC)DemoDlgHandler));
}

Now come the load- and save methods. To maintain a readable ASCII-format
for the configuration (.cfg) file, the load_property and save_property - methods
are used. Thus, configuration files can be imported with a text-editor.

void DEMOOBJ::load(HANDLE hFile)
{
 load_object_basics(this); // load basic values like element position,
 // in- and outport properties, element tag
 // now load our 3 element properties :
 load_property("pos",P_INT,&pos); // load the scrollbar position
 load_property("selection",P_INT,&selection); // load the combobox selection
 load_property("string",P_STRING,string); // load the edit text

 // (...) do additional initialisations here
}

void DEMOOBJ::save(HANDLE hFile) // hFile will be the opened configfile
{
 save_object_basics(hFile,this); // save the basic values
 save_property(hFile,"pos",P_INT,&pos);
 save_property(hFile,"selection",P_INT,&selection);
 save_property(hFile,"string",P_STRING,string);

 // the order of the properties is not critical, properties could be loaded or saved at another
 // position also. For float values, use the type P_FLOAT.
}

For objects that hold large amounts of data (like color palettes, tone scales, sig-
nal segments etc.) it would make no sense to store all this data in an alphanu-
merical format in the configuration file. Therefore, only a filename that points to
a seperate file should be stored in such cases. De-initialisation of the previous
setting and initialisation of a new setting may be necessary in the load() method.
(like freeing a buffer, allocating new memory for a function, ...). Examples are
the filter- and magnitude- elements.

BrainBay - Developer Manual page 24 / 35

Next, the incoming_data - method provides handling of data coming into the in-
puts ports of our element :

void DEMOOBJ::incoming_data(int port, float value)
{
 if (value != INVALID_VALUE) // discard INVALID_VALUEs
 {
 if (port==0) in1 = value; // store value received at input port 1
 if (port==1) in2 = value; // store value received at input port 2
 }
}

The work method calculates the output according to combobox-selection and
gain value of the scrollbar an passes it to elements connected to the output port:

void DEMOOBJ::work(void)
{
 switch (selection) // generate output value according to combo-selection
 {
 case 0: pass_values(0, in1 * pos / 100.0f); break;
 case 1: pass_values(0, in2 * pos / 100.0f); break;
 case 2: pass_values(0, (in1+in2) * pos); break;
 }
}

The class implementation is finished with the object deconstructor which cleans
up allocated memory etc:

DEMOOBJ::~DEMOOBJ() {} // nothing special in the deconstructor (nothing to free etc)

All needed methods are implemented by now. For demonstartion purpose, us-
age of the additional methods will be shown:

void DEMOOBJ::update_inports(void) // will be called when input ports are connected
{ // or disconnected
 inports=count_inports(this); // get the number of the greatest connected port
 // -> this will lead to dynamic number of input ports

 height=CON_START+inports*CON_HEIGHT+5; // new size of the element
 InvalidateRect(ghWndDesign,NULL,TRUE); // repaint design window
}

void DEMOOBJ::session_start(void) // will be called when Play -button
{ report ("Session has been started"); } // in the status bar was pressed

void DEMOOBJ::session_stop(void) // will be called when Stop- button
{ report ("Session has been stopped"); } // in the status bar was pressed

void DEMOOBJ::session_reset(void) // will be called when Reset- button
{ report ("Session has been reset"); } // in the status bar was pressed

void DEMOOBJ::session_pos(long pos) // will be called when Positioning the
{ // archive in the status bar was done
 char sztemp[50];
 sprintf(sztemp,"Session has been positioned to %d.",pos);
 report(sztemp);
}

BrainBay - Developer Manual page 25 / 35

Finally, we implement our dialog handler to process user interaction. The dialog
box is created by the make_dialog method shown above.

LRESULT CALLBACK DemoDlgHandler(HWND hDlg, UINT message, WPARAM wParam,
LPARAM lParam)
{
 DEMOOBJ * st;
 st = (DEMOOBJ *) actobject; // first get a pointer to the active element:
 // actobject, was selected by the user

 switch(message)
 {
 case WM_INITDIALOG: // the user dialog is to be created
 SCROLLINFO lpsi;
 lpsi.cbSize=sizeof(SCROLLINFO); // set the ranges for the scrollbar to 1 - 100
 lpsi.fMask=SIF_RANGE|SIF_POS;
 lpsi.nMin=1; lpsi.nMax=100;
 SetScrollInfo(GetDlgItem(hDlg,IDC_SCROLLBAR),SB_CTL,&lpsi, TRUE);

 // set the scroll-position to the current value stored in pos
 SetScrollPos(GetDlgItem(hDlg,IDC_SCROLLBAR), SB_CTL,st->pos, TRUE);

 SetDlgItemText(hDlg, IDC_EDIT, st->string); // display string in edit field

 // now, fill the combobox with our three possible selections and select current value:
 SendDlgItemMessage(hDlg, IDC_COMBO, CB_ADDSTRING, 0,(LPARAM) "IN1") ;
 SendDlgItemMessage(hDlg, IDC_COMBO, CB_ADDSTRING, 0,(LPARAM) "IN2") ;
 SendDlgItemMessage(hDlg, IDC_COMBO, CB_ADDSTRING, 0,(LPARAM) "IN1+2") ;
 SendDlgItemMessage(hDlg, IDC_COMBO, CB_SETCURSEL, st->selection, 0L) ;
 break;

 case WM_CLOSE: // the user dialog is to be closed
 EndDialog(hDlg, LOWORD(wParam));
 return TRUE;

 case WM_COMMAND: // a dialog Item receives a message
 switch (LOWORD(wParam)) // get the ID of the dialog Item
 {
 case IDC_COMBO: // combo box has been changed
 if (HIWORD(wParam)==CBN_SELCHANGE)
 st->selection= // store the new selection
 SendMessage(GetDlgItem(hDlg, IDC_COMBO), CB_GETCURSEL , 0, 0);
 break;

 case IDC_EDIT: // the edit field has been changed
 GetDlgItemText(hDlg, IDC_ÊDIT, st->string, 50); // store the new text
 break;

 case IDC_BUTTON: // the button has been pressed
 report (st->string) ; // display message with current text
 break;
 }
 return TRUE;

 case WM_HSCROLL: // a scrollbar has been changed
 {
 int nNewPos= get_scrollpos(wParam,lParam); // get the new value of the scrollbar
 // is this our scrollbar ? (this is only necessary when there are more scrollbars)
 if (lParam == (long) GetDlgItem(hDlg,IDC_SCROLLBAR))
 st->pos=nNewPos ; // yes: store value in pos
 }
 break;

BrainBay - Developer Manual page 26 / 35

// what remains is to take care of our user dialog:

 case WM_SIZE: // when the user dialog was moved or sized:
 case WM_MOVE:
 update_toolbox_position(hDlg); // save the new position
 break;
 return(TRUE);
 }
return (FALSE);
}

That's it for the implementation :-)

5.4 The Menu-entry and Call for the new element

Use the resource-editor to create a menu entry for the demo-element:
Select the Insert Element - menu and the submenu the element belongs to
(here Others was chosen). Add tiltle and identifier for the menupoint using the
properties-winow :

Now, change to the source file brainbay.cpp which contains the main dialog
handler. Browse to the location where the menu-points are processed and add a
line for the new element :

 (...)
 case IDM_INSERTFILE_WRITER:create_object(OB_FILE_WRITER); break;
 case IDM_INSERTDEVIATION:create_object(OB_DEVIATION); break;
 case IDM_INSERTMCIPLAYER:create_object(OB_MCIPLAYER); break;
 case IDM_INSERTDEMO:create_object(OB_DEMO); break;
 (...)

BrainBay - Developer Manual page 27 / 35

Change to the source file globals.h, and add the header file to the include-
section:

(...)
#include "ob_file_writer.h"
#include "ob_deviation.h"
#include "ob_mci.h"
#include "ob_demo.h"

Browse to the create_object - function and add a line for the new element:

 (...)
 case OB_FILE_WRITER: actobject=new FILE_WRITEROBJ(GLOBAL.objects); break;
 case OB_DEVIATION: actobject=new DEVIATIONOBJ(GLOBAL.objects); break;
 case OB_MCIPLAYER: actobject=new MCIOBJ(GLOBAL.objects); break;
 case OB_DEMO: actobject=new DEMOOBJ(GLOBAL.objects); break;

Now all is ready to compile the project and test the new element :

 .. the demo-element in action ..

BrainBay - Developer Manual page 28 / 35

6. File Formats and Transmission Protocols

6.1 Structure of the European Data Format (EDF)

The EDF - File Standard is used by the EDF-File Reader, EDF-File Writer, TCP-
Receive and TCP-Send - elementes. It allows a dynamic number of channels
and signal ranges. The file header consists of 256 + <ns> * 256 bytes, where
<ns> is the number of signals in the recording:

 HEADER RECORD :

8 ascii : version of this data format (0)
80 ascii : local patient identification
80 ascii : local recording identification
8 ascii : startdate of recording (dd.mm.yy)
8 ascii : starttime of recording (hh.mm.ss)
8 ascii : number of bytes in header record
44 ascii : reserved
8 ascii : number of data records (-1 if unknown)
8 ascii : duration of a data record, in seconds
4 ascii : number of signals (ns) in data record

// ns.. number of signals (channels)
ns * 16 ascii : labels (e.g. EEG FpzCz or Body temp)
ns * 80 ascii : transducer types (e.g. AgAgCl electrode)
ns * 8 ascii : physical dimensions (e.g. uV or degreeC)
ns * 8 ascii : physical minimums (e.g. -500 or 34)
ns * 8 ascii : physical maximums (e.g. 500 or 40)
ns * 8 ascii : digital minimums (e.g. -2048)
ns * 8 ascii : digital maximums (e.g. 2047)
ns * 80 ascii : prefiltering infos (e.g. HP:0.1Hz LP:75Hz)
ns * 8 ascii : nr of samples / segment
ns * 32 ascii : reserved

The header is followed by channel data in binary format:

channel[1] * integer : first signal in the data record
channel[2] * integer : second signal
..
..
channel[ns] * integer : last signal

BrainBay - Developer Manual page 29 / 35

6.2 P2 - Firmware Protocol

The P2 Firmware Protocol was the inital transmission protocol of the OpenEEG
project, used by ModularEEG. It is compatible with the ElectricGuru application.
P2 uses 17 data bytes to transmit 6 channels of EEG data:

 1: sync0; // synchronisation byte 1 = 0xa5
 2: sync1; // synchronisation byte 2 = 0x5a
 3: version; // version number = 2
 4: count; // packet counter. Increases by 1 each packet.
 5: Chn1low // channel 1 low byte
 6: Chn1high // channel 2 high byte
 7: Chn2low // channel 2 low byte
 8: Chn2high // ...
 9: Chn3low
 10: Chn3high
 11: Chn4low
 12: Chn4high
 13: Chn5low
 14: Chn5high
 15: Chn6low
 16: Chn6high // channel 6 high byte
 17: switches; // State of PD5 to PD2, in bits 3 to 0.

6.3 P3 - Firmware Protocol

ModularEEG Packet Format Version 3 is the successor of the P2 protocol. It
provides a packet transmission that could achive higher sampling rates with the
same baudrate. One packet can have zero, two, four or six channels (or more).
The default is a 6-channel packet, shown below.

 0ppppppx packet header
 0xxxxxxx

 0aaaaaaa channel 0 LSB

 0bbbbbbb channel 1 LSB

 0aaa-bbb channel 0 and 1 MSB

 0ccccccc channel 2 LSB

 0ddddddd channel 3 LSB

 0ccc-ddd channel 2 and 3 MSB

 0eeeeeee channel 4 LSB

 0fffffff channel 5 LSB

 1eee-fff channel 4 and 5 MSB

 Key:

 1 and 0 = sync bits. Note that the '1' sync bit is in the last byte of the packet, regardless
 of how many channels are in the packet.
 p = 6-bit packet counter
 x = auxillary channel byte
 a - f = 10-bit samples from ADC channels 0 - 5
 - = unused, must be zero

There are 8 auxillary channels that are transmitted in sequence. The 3 least
significant bits of the packet counter determine what channel is transmitted in
the current packet.

 Aux Channel Allocations:
 0: Zero-terminated ID-string (ASCII, currently "mEEGv1.0")
 4: Port D status bits (Aux channels 1-3 and 4-7 are curently free)

BrainBay - Developer Manual page 30 / 35

6.4 P21 - Firmware Protocol

In P21 protocol, a packet has variable length, it depends on how many channels
we want to receive. Each channel can be set individually via backward commu-
nication. This bi-direction option is used by the MonolithEEG amplifier to pro-
cess also changes of the sampling- and baudrate as setting the digital output
lines of the microcontroller.

Packet format

1cccnnnn
0pppaaaa
0bbbbbbb
....
0pppaaaa
0bbbbbbb

ccc - number of channels in packet, total packet length = 1 + (2 * ccc);
nnnn - 4 bit control sequence number
ppp - channel id, 0-5 are A/D channels,
6 is for backward information (requested or error code)
7 - not used now
aaaa - if the ppp is 0-5, then the lower three bits of aaaa contains 3 highest bits of 10bit
channel value, the highest bit of aaaa is set to 0
 if the ppp is 6, then it contains id/selector of backward information
bbbbbbb - if the ppp is 0-5, then it contains 7 lower bits of 10bit value
 if the ppp is 6, then it contains backward information value

7. Credits and Links

Joerg Hansmann initiated the OpenEEG project with his marvellous hardware-
design of the ModularEEG. Find further information about the amplifier design at
http://openeeg.sourceforge.net/doc/modeeg/modeeg.html

Reiner Muench developed the MonolithEEG, which improved some features of
the ModularEEG and provides a lightweight and small SMD-design. Find his
great work at: http://people.freenet.de/moosec/projekte/simpleeeg/index-
Dateien/MonolithEEG13_e.htm

Contributions to the BrainBay Application were made by Jim Peters by providing
the filter library. Find his work at http://uazu.net.

Jeremy Wilkerson and Lester John did a great job in developing some useful
BrainBay elements.

For other project related information visit:
http://openeeg.sf.net
http://brainbay.lo-res.org/links.htm

BrainBay - Developer Manual page 31 / 35

8. Disclaimer - Nonliability

8.1 Content
The author reserves the right not to be responsible for the topicality, correct-
ness, completeness or quality of the information provided. Liability claims re-
garding damage caused by the use of any information provided, including any
kind of information which is incomplete or incorrect, will therefore be rejected. All
offers are not-binding and without obligation. Parts of the pages or the complete
publication including all offers and information might be extended, changed or
partly or completely deleted by the author without separate announcement.

8.2 Referrals and links
The author is not responsible for any contents linked or referred to from his
pages - unless he has full knowledge of illegal contents and would be able to
prevent the visitors of his site from viewing those pages. If any damage occurs
by the use of information presented there, only the author of the respective pag-
es might be liable, not the one who has linked to these pages. Furthermore the
author is not liable for any postings or messages published by users of discus-
sion boards, guestbooks, blogs or mailinglists provided on his page.

8.3 Copyright
The Source Code of the Application is provided in terms of the GNU GPL li-
cence, see chapter 9. The author intended not to use any copyrighted material
for the publication or, if not possible, to indicatethe copyright of the respective
object. The copyright for any material created by the author is reserved. Any
duplication or use of objects such as diagrams, sounds or texts in other elec-
tronic or printed publications is not permitted without the author's agreement.

8.4 Privacy policy
If the opportunity for the input of personal or business data (email addresses,
name, addresses) is given, the input of these data takes place voluntarily. The
use of all offered services are permitted - if and so far technically possible and
reasonable - without specification of any personal data or under specification of
anonymized data or an alias. The use of published postal addresses, telefone or
fax numbers and email addresses for marketing purposes is prohibited, offend-
ers sending unwanted spam messages shall be punished.

8.5 Legal validity of this disclaimer
This disclaimer is to be regarded as part of the internet publication which you
were referred

BrainBay - Developer Manual page 32 / 35

9. GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991
 Terms and Conditions for copying, distribution and modification

This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The "Program", below, refers to any such program or work, and a "work
based on the Program" means either the Program or any derivative work under copy-
right law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation
is included without limitation inthe term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered by this Li-
cense; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the Program). Whether that
is true depends on what the Program does.

9.1 You may copy and distribute verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and give any
other recipients of the Program a copy of this License along with the Program. You may
charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

9.2 You may modify your copy or copies of the Program or any portion of it, thus form-

ing a work based on the Program, and copy and distribute such modifications or work
under the terms of Section 9.1 above, provided that you also meet all of these condi-
tions:

 a) You must cause the modified files to carry prominent notices stating that you
 changed the files and the date of any change.
 b) You must cause any work that you distribute or publish, that in whole or in part
 contains or is derived from the Program or any part thereof, to be licensed as a
 whole at no charge to all third parties under the terms of this License.
 c) If the modified program normally reads commands interactively when run, you
 must cause it, when started running for such interactive use in the most ordinary
 way, to print or display an announcement including an appropriate copyright no-
 tice and a notice that there is no warranty (or else, saying that you provide a war-
 ranty) and that users may redistribute the program under these conditions, and
 telling the user how to view a copy of this License. (Exception: if the Program it
 self is interactive but does not normally print such an announcement, your work
 based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered inde-
pendent and separate works in themselves, then this License, and its terms, do not ap-
ply to those sections when you distribute them as separate works. But when you dis-
tribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it. Thus, it is not the intent of this section to claim rights or contest your

BrainBay - Developer Manual page 33 / 35

rights to work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Pro-
gram (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

9.3 You may copy and distribute the Program (or a work based on it, under Section 9.2

in object code or executable form under the terms of Sections 9.1 and 9.2 above pro-
vided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable source code,
 which must be distributed under the terms of Sections 9.1 and 9.2 above on a
 medium customarily used for software interchange; or,
 b) Accompany it with a written offer, valid for at least three years, to give any third
 party, for a charge no more than your cost of physically performing source distri-
 bution, a complete machine-readable copy of the corresponding source code, to
 be distributed under the terms of Sections 9.1 and 9.2 above on a medium cus-
 tomarily used for software interchange; or,
 c) Accompany it with the information you received as to the offer to distribute corre
 sponding source code. (This alternative isallowed only for noncommercial distri-
 bution and only if you received the program in object code or executable form
 with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is normally dis-
tributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that compo-
nent itself accompanies the executable. If distribution of executable or object code is
made by offering access to copy from a designated place, then offering equivalent ac-
cess to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the ob-
ject code.

9.4 You may not copy, modify, sublicense, or distribute the Program except as express-
ly provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this Li-
cense. However, parties who have received copies, or rights, from you under this Li-
cense will not have their licenses terminated so long as such parties remain in full com-
pliance.

9.5 You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. There-
fore, by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

9.6 Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions. You may not impose any
further restrictions on the recipients' exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

BrainBay - Developer Manual page 34 / 35

9.7 If, as a consequence of a court judgment or allegation of patent infringement or for

any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so
as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For ex-
ample, if a patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Program. If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply and the section as
a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other proper-
ty right claims or to contest validity of any such claims; this section has the sole pur-
pose of protecting the integrity of the free software distribution system, which is imple-
mented by public license practices. Many people have made generous contributions to
the wide range of software distributed through that system in reliance on consistent ap-
plication of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9.8 If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation ex-
cluding those countries, so that distribution is permitted only in or among countries not
thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9.9 The Free Software Foundation may publish revised and/or new versions of the

General Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. Each
version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option
of following the terms and conditions either of that version or of any later version pub-
lished by the Free Software Foundation. If the Program does not specify a version
number of this License, you may choose any version ever published by the Free Soft-
ware Foundation.

9.10 If you wish to incorporate parts of the Program into other free programs whose dis-

tribution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

9.11 BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

BrainBay - Developer Manual page 35 / 35

9.12 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

9.13 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the
public, the best way to achieve this is to make it free software which everyone can re-
distribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each
file should have at least the "copyright" line and a pointer to where the full notice is
found:

COPYRIGHT
This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more de-
tails.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA. Also add information on how to contact you by
electronic and paper mail.

This General Public License does not permit incorporating your program into proprie-
tary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

If sections or individual terms of this statement are not legal or correct, the content or
validity of the other parts remain uninfluenced by this fact.

